Kevin Mchugh, Department of Bioengineering at Rice University Leveraging dynamic covalent bonding to create a LA Ganfeborole formulation: PK and efficacy for ΤВ

"We see [dynamic covalent bonding] as a flexible tool"

Overview of hydrogels

Hydrogel composition and nanostructure.

- Up to 99% water and 1% material of interest.
- Natural (peptides) or synthetic (polymers) materials can be used.
- Fibrous nanostructure enables the potential to retain bioactive agents. (hydrogel encapsulates the drug of interest).

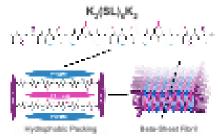
Application for TB treatment.

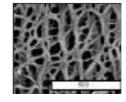
We are using interesting chemistry to develop a LA hydrogel formulation of Ganfeborole [GFB], a TB drug candidate that requires QD oral dosing for >8w.

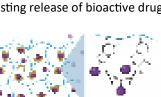
Engineering peptide hydrogels

Multidomain peptide (MDP) primary structure.

- The "right" amino acid sequence self-assembles into hydrogelforming nanofibers that can load and release small-molecule drugs.
- General MDP design.
 - Core: Alternating hydrophilic and hydrophobic residues drive Beta-sheet formation. 0
 - Termini: A pair of charged residues enables non-covalent cross-linking of nanofibers.
- Key MDP characteristics.


Valuable characteristics	Limitation
Biocompatible	Small-molecule drugs
Biodegradable (enzymatic degradation to aa).	are rapidly released
Injectable (via 25G needle or smaller)	over hours via
Mild preparation conditions (aq. salt solution)	diffusion or weak
Easy and inexpensive to produce	electrostatic forces.


MDPs are injectable due to shear thinning and recovery. The thixotropic 0 material "liquifies" under shear stress (i.e., while passing through a small-bore needle) and "re-gels" on the other side (i.e., once the shear stress is removed).


Drug-nanofiber interactions can tailor drug release.

- Various mechanisms bond the drug to the hydrogel (e.g., covalent linkage, electrostatic interaction, and hydrophobic association).
- Dynamic covalent bonding is a "traceless" mechanism with potential for long-lasting release of bioactive drug.
 - Specific chemistry forms a reversible, slightly energetically favored covalent bond between the unmodified drug and hydrogel.
 - 0 The equilibrium between bound and soluble drug is shifted towards the bound state.
 - Only the smaller proportion of soluble drug is free to diffuse out, 0 extending the release.

Leveraging dynamic covalent bonding for LA/ER formulations

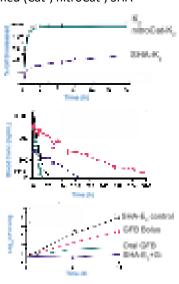
MDP modification with boronate esters – catechol (Cat-K₂), nitrocatechol (nitroCat-K₂), or salicylhydroxamic acid (SHA-K₂) hydrogels.

- Functionalized MDPs retain key MDP functions: Self-assembly; Beta-sheet formation; Hydrogel integrity; and Shear recovery.
- Boronate ester groups form dynamic covalent bonds with boronic acid in BA-containing drugs (i.e., GFB), which could extend drug release.
- in vitro studies confirm delayed release of small-molecule BA drugs mixed with modified (Cat-, nitroCat-, SHA-K₂) vs unmodifed MDPs (K₂).
 - SHA modification significantly delayed the release of all four drugs (Ixazomib, Bortezomib, Tavaborole, and GFB).
 - Only SHA-K₂ significantly delayed GFB release and advanced to *in vivo* studies.

PK and efficacy of GFB+hydrogel SC in BALB/c mice (TB test case in

collaboration with Eric Nuermberger).

- Single-dose PK in uninfected mice (SHA-K₂+GFB SC vs GFB SC).
 - SHA-K₂ extended the release of GFB.
 - SHA-K₂+GFB (600mcg) sustained conc > ED50 for \geq 3w; Increased AUC 2.8-fold.
- Single-dose efficacy in mice with acute Mtb infection (SHA-E₂+GFB SC vs GFB SC x1 vs QD oral GFB x2w).
 - $\circ \quad {\sf SHA-E_2} \ {\sf outperformed} \ {\sf the equivalent} \ {\sf QD} \ {\sf oral} \ {\sf dose} \ {\sf and} \ {\sf single} \ {\sf soluble} \ {\sf injection}.$
 - SHA-E₂+GFB suppressed Mtb growth for 2w (Growth at 3w due to depot depletion).


Expanding drug flexibility

Drug modification with phenylboronic acid (PBA).

- Enables dynamic covalent bonding between functionalized MDPs and drugs that do not contain BA (Only five BA-containing drugs are FDA-approved).
- Modified hydrogels extend the release of PBA-modified small molecules and biologics; bioactivity is not significantly altered.

Summary

- **Developing a library of functionalized hydrogels** capable of dynamic covalent bonding with BAs for extended release.
- **Demonstrated extended release** of BA-containing drugs and PBA-modified drugs and proteins.
- Demonstrated preclinical efficacy of LAI GFB for TB treatment.
- **Future directions:** Chronic infection studies; Optimize SHA-modified hydrogel; Model PK in humans; Combination therapy with new small-molecule drugs and protein therapeutics.

